Your browser doesn't support javascript.
loading
Spectroscopic evidence for the origin of odd-even effects in self-assembled monolayers and effects of substrate roughness.
Chen, Jiahao; Liu, Jian; Tevis, Ian D; Andino, Richard S; Miller, Christina M; Ziegler, Lawrence D; Chen, Xin; Thuo, Martin M.
Afiliación
  • Chen J; Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA. mthuo@iastate.edu and Microelectronic Research Centre, Iowa State University, Ames, IA 50011, USA.
  • Liu J; Department of Chemistry and the Photonics Centre, Boston University, Boston, MA 02215, USA.
  • Tevis ID; Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA. mthuo@iastate.edu.
  • Andino RS; Department of Chemistry and the Photonics Centre, Boston University, Boston, MA 02215, USA.
  • Miller CM; Department of Chemistry and the Photonics Centre, Boston University, Boston, MA 02215, USA.
  • Ziegler LD; Department of Chemistry and the Photonics Centre, Boston University, Boston, MA 02215, USA.
  • Chen X; Department of Chemistry and the Photonics Centre, Boston University, Boston, MA 02215, USA.
  • Thuo MM; Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA. mthuo@iastate.edu and Microelectronic Research Centre, Iowa State University, Ames, IA 50011, USA.
Phys Chem Chem Phys ; 19(10): 6989-6995, 2017 Mar 08.
Article en En | MEDLINE | ID: mdl-28244512
ABSTRACT
This paper reports the effects of substrate roughness on the odd-even effect in n-alkanethiolate self-assembled monolayers (SAMs) probed by vibrational sum frequency generation (SFG) spectroscopy. By fabricating SAMs on surfaces across the so-called odd-even limit, we demonstrate that differentiation of the vibrational frequencies of CH3 from SAMs derived from alkyl thiols with either odd (SAMO) or even (SAME) numbers of carbons depends on the roughness of the substrate on which they are formed. Odd-even oscillation in SFG susceptibility amplitudes was observed for spectra derived from SAME and SAMO fabricated on flat surfaces (RMS roughness = 0.4 nm) but not on rougher surfaces (RMS roughness = 2.38 nm). In addition, we discovered that local chemical environments for the terminal CH3 group have a chain-length dependence. There seems to be a transition at around C13, beyond which SAMs become "solid-like".

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos