Your browser doesn't support javascript.
loading
Bottom-Up Elucidation of Glycosidic Bond Stereochemistry.
Gray, Christopher J; Schindler, Baptiste; Migas, Lukasz G; Picmanová, Martina; Allouche, Abdul R; Green, Anthony P; Mandal, Santanu; Motawia, Mohammed S; Sánchez-Pérez, Raquel; Bjarnholt, Nanna; Møller, Birger L; Rijs, Anouk M; Barran, Perdita E; Compagnon, Isabelle; Eyers, Claire E; Flitsch, Sabine L.
Afiliación
  • Gray CJ; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Schindler B; Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne Cedex, France.
  • Migas LG; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Picmanová M; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences and Center for Synthetic Biology, University of Copenhagen , 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  • Allouche AR; Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne Cedex, France.
  • Green AP; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Mandal S; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Motawia MS; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences and Center for Synthetic Biology, University of Copenhagen , 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  • Sánchez-Pérez R; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences and Center for Synthetic Biology, University of Copenhagen , 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  • Bjarnholt N; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences and Center for Synthetic Biology, University of Copenhagen , 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  • Møller BL; Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences and Center for Synthetic Biology, University of Copenhagen , 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  • Rijs AM; Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands.
  • Barran PE; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Compagnon I; Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom.
  • Eyers CE; Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne Cedex, France.
  • Flitsch SL; Institut Universitaire de France IUF , 103 Boulevard St. Michel, 75005 Paris, France.
Anal Chem ; 89(8): 4540-4549, 2017 04 18.
Article en En | MEDLINE | ID: mdl-28350444
ABSTRACT
The lack of robust, high-throughput, and sensitive analytical strategies that can conclusively map the structure of glycans has significantly hampered progress in fundamental and applied aspects of glycoscience. Resolution of the anomeric α/ß glycan linkage within oligosaccharides remains a particular challenge. Here, we show that "memory" of anomeric configuration is retained following gas-phase glycosidic bond fragmentation during tandem mass spectrometry (MS2). These findings allow for integration of MS2 with ion mobility spectrometry (IM-MS2) and lead to a strategy to distinguish α- and ß-linkages within natural underivatized carbohydrates. We have applied this fragment-based hyphenated MS technology to oligosaccharide standards and to de novo sequencing of purified plant metabolite glycoconjugates, showing that the anomeric signature is also observable in fragments derived from larger glycans. The discovery of the unexpected anomeric memory effect is further supported by IR-MS action spectroscopy and ab initio calculations. Quantum mechanical calculations provide candidate geometries for the distinct anomeric fragment ions, in turn shedding light on gas-phase dissociation mechanisms of glycosidic linkages.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido