Your browser doesn't support javascript.
loading
Current-Phase Relation of Ballistic Graphene Josephson Junctions.
Nanda, G; Aguilera-Servin, J L; Rakyta, P; Kormányos, A; Kleiner, R; Koelle, D; Watanabe, K; Taniguchi, T; Vandersypen, L M K; Goswami, S.
Afiliación
  • Nanda G; Kavli Institute of Nanoscience, Delft University of Technology , 2600 GA Delft, The Netherlands.
  • Aguilera-Servin JL; Kavli Institute of Nanoscience, Delft University of Technology , 2600 GA Delft, The Netherlands.
  • Rakyta P; Institute of Science and Technology Austria , Am Campus 1, A-3400 Klosterneuburg, Austria.
  • Kormányos A; Department of Physics of Complex Systems, Eötvös University , Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.
  • Kleiner R; Department of Physics, University of Konstanz , D-78464 Konstanz, Germany.
  • Koelle D; Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
  • Watanabe K; Physikalisches Institut and Center for Quantum Science (CQ) in LISA+, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
  • Taniguchi T; National Institute for Materials Science , 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Vandersypen LMK; National Institute for Materials Science , 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Goswami S; Kavli Institute of Nanoscience, Delft University of Technology , 2600 GA Delft, The Netherlands.
Nano Lett ; 17(6): 3396-3401, 2017 06 14.
Article en En | MEDLINE | ID: mdl-28474892
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Qualitative_research Idioma: En Revista: Nano Lett Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos