Your browser doesn't support javascript.
loading
MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS.
Vekemans, Xavier; Schierup, Mikkel H; Christiansen, Freddy B.
Afiliación
  • Vekemans X; Laboratoire de Génétique et d'Ecologie Végétales, Université Libre de Bruxelles, 1850 Chaussée de Wavre, B-1160 Brussels, Belgium.
  • Schierup MH; Department of Ecology and Genetics, University of Aarhus, DK-8000, Aarhus C., Denmark.
  • Christiansen FB; Department of Ecology and Genetics, University of Aarhus, DK-8000, Aarhus C., Denmark.
Evolution ; 52(1): 19-29, 1998 Feb.
Article en En | MEDLINE | ID: mdl-28568138
ABSTRACT
We investigate mate availability in different models of multiallelic self-incompatibility systems in mutation-selection-drift balance in finite populations. Substantial differences among self-incompatibility systems occur in average mate availability, and in variances of mate availability among individual plants. These differences are most pronounced in small populations in which low mate availability may reduce seed set in some types of sporophytic self-incompatibility. In cases where the pollination system causes a restriction in the number of pollen genotypes available to an individual plant, the fecundity of that plant depends on the availability of compatible pollen, which is determined by its genotype at the incompatibility locus. This leads to an additional component of selection acting on self-incompatibility systems, which we term "fecundity selection." Fecundity selection increases the number of alleles maintained in finite populations and increases mate availability in small populations. The strength of fecundity selection is dependent on the type of self-incompatibility. In some cases, fecundity selection markedly alters the equilibrium dynamics of self-incompatibility alleles. We discuss the population genetic consequences of mate availability and fecundity selection in the contexts of conservation management of self-incompatible plant species and experimental investigations on self-incompatibility in natural populations.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Evolution Año: 1998 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Evolution Año: 1998 Tipo del documento: Article País de afiliación: Bélgica