Your browser doesn't support javascript.
loading
Atomic resolution elemental mapping using energy-filtered imaging scanning transmission electron microscopy with chromatic aberration correction.
Krause, F F; Rosenauer, A; Barthel, J; Mayer, J; Urban, K; Dunin-Borkowski, R E; Brown, H G; Forbes, B D; Allen, L J.
Afiliación
  • Krause FF; Institute for Solid State Physics and Center of Excellence for Materials and Processes, Bremen University, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
  • Rosenauer A; Institute for Solid State Physics and Center of Excellence for Materials and Processes, Bremen University, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
  • Barthel J; Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, 52425 Jülich, Germany.
  • Mayer J; Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, 52425 Jülich, Germany.
  • Urban K; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, 52425 Jülich, Germany.
  • Dunin-Borkowski RE; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, 52425 Jülich, Germany.
  • Brown HG; School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.
  • Forbes BD; School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.
  • Allen LJ; School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia. Electronic address: lja@unimelb.edu.au.
Ultramicroscopy ; 181: 173-177, 2017 10.
Article en En | MEDLINE | ID: mdl-28601013
ABSTRACT
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Microscopía Electrónica de Transmisión de Rastreo / Energía Filtrada en la Transmisión por Microscopía Electrónica Idioma: En Revista: Ultramicroscopy Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Microscopía Electrónica de Transmisión de Rastreo / Energía Filtrada en la Transmisión por Microscopía Electrónica Idioma: En Revista: Ultramicroscopy Año: 2017 Tipo del documento: Article País de afiliación: Alemania