Your browser doesn't support javascript.
loading
Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.
Ortiz-Terán, Laura; Diez, Ibai; Ortiz, Tomás; Perez, David L; Aragón, Jose Ignacio; Costumero, Victor; Pascual-Leone, Alvaro; El Fakhri, Georges; Sepulcre, Jorge.
Afiliación
  • Ortiz-Terán L; Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
  • Diez I; Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA 02114.
  • Ortiz T; Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
  • Perez DL; BioCruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain.
  • Aragón JI; Departamento de Psiquiatría, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain.
  • Costumero V; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
  • Pascual-Leone A; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.
  • El Fakhri G; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129.
  • Sepulcre J; Departamento de Radiodiagnóstico, Hospital Universitario Puerta de Hierro de Majadahonda, Madrid 28222, Spain.
Proc Natl Acad Sci U S A ; 114(26): 6830-6835, 2017 06 27.
Article en En | MEDLINE | ID: mdl-28607055
Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Corteza Somatosensorial / Regulación de la Expresión Génica / Ceguera / Red Nerviosa / Proteínas del Tejido Nervioso / Plasticidad Neuronal Límite: Child / Female / Humans / Male Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Corteza Somatosensorial / Regulación de la Expresión Génica / Ceguera / Red Nerviosa / Proteínas del Tejido Nervioso / Plasticidad Neuronal Límite: Child / Female / Humans / Male Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article