Your browser doesn't support javascript.
loading
CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology.
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu.
Afiliación
  • Cankorur-Cetinkaya A; Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
  • Dias JML; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
  • Kludas J; Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0QQ, UK.
  • Slater NKH; Helsinki Institute for Information Technology HIIT; Department of Computer Science, Aalto University, Konemiehentie 2, Espoo, FI-02150, Finland.
  • Rousu J; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
  • Oliver SG; Helsinki Institute for Information Technology HIIT; Department of Computer Science, Aalto University, Konemiehentie 2, Espoo, FI-02150, Finland.
  • Dikicioglu D; Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
Microbiology (Reading) ; 163(6): 829-839, 2017 06.
Article en En | MEDLINE | ID: mdl-28635591
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Pichia / Muramidasa / Biología Computacional Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Pichia / Muramidasa / Biología Computacional Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2017 Tipo del documento: Article