Your browser doesn't support javascript.
loading
RadH: A Versatile Halogenase for Integration into Synthetic Pathways.
Menon, Binuraj R K; Brandenburger, Eileen; Sharif, Humera H; Klemstein, Ulrike; Shepherd, Sarah A; Greaney, Michael F; Micklefield, Jason.
Afiliación
  • Menon BRK; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Brandenburger E; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Sharif HH; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Klemstein U; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Shepherd SA; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Greaney MF; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
  • Micklefield J; School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
Angew Chem Int Ed Engl ; 56(39): 11841-11845, 2017 09 18.
Article en En | MEDLINE | ID: mdl-28722773
ABSTRACT
Flavin-dependent halogenases are useful enzymes for providing halogenated molecules with improved biological activity, or intermediates for synthetic derivatization. We demonstrate how the fungal halogenase RadH can be used to regioselectively halogenate a range of bioactive aromatic scaffolds. Site-directed mutagenesis of RadH was used to identify catalytic residues and provide insight into the mechanism of fungal halogenases. A high-throughput fluorescence screen was also developed, which enabled a RadH mutant to be evolved with improved properties. Finally we demonstrate how biosynthetic genes from fungi, bacteria, and plants can be combined to encode a new pathway to generate a novel chlorinated coumarin "non-natural" product in E. coli.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2017 Tipo del documento: Article País de afiliación: Reino Unido