Your browser doesn't support javascript.
loading
Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.
Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni.
Afiliación
  • Mina M; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
  • Raynaud F; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
  • Tavernari D; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
  • Battistello E; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale Lausanne (EPFL), 1015 Lausanne, Vaud, Switzerla
  • Sungalee S; Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale Lausanne (EPFL), 1015 Lausanne, Vaud, Switzerland.
  • Saghafinia S; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale Lausanne (EPFL), 1015 Lausanne, Vaud, Switzerla
  • Laessle T; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland.
  • Sanchez-Vega F; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Schultz N; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
  • Oricchio E; Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale Lausanne (EPFL), 1015 Lausanne, Vaud, Switzerland.
  • Ciriello G; Department of Computational Biology, University of Lausanne (UNIL), 1011 Lausanne, Vaud, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland. Electronic address: giovanni.ciriello@unil.ch.
Cancer Cell ; 32(2): 155-168.e6, 2017 08 14.
Article en En | MEDLINE | ID: mdl-28756993
Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Selección Genética / Algoritmos / Evolución Molecular / Carcinogénesis / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cancer Cell Asunto de la revista: NEOPLASIAS Año: 2017 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Selección Genética / Algoritmos / Evolución Molecular / Carcinogénesis / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Cancer Cell Asunto de la revista: NEOPLASIAS Año: 2017 Tipo del documento: Article País de afiliación: Suiza