Your browser doesn't support javascript.
loading
Enantioselective synthesis of sulfoxide using an SBA-15 supported vanadia catalyst: a computational elucidation using a QM/MM approach.
Kaur, Navjot; Gupta, Shuchi; Goel, Neetu.
Afiliación
  • Kaur N; Theoretical & Computational Chemistry Group, Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India. neetugoel@pu.ac.in.
Phys Chem Chem Phys ; 19(36): 25059-25070, 2017 Sep 20.
Article en En | MEDLINE | ID: mdl-28879359
ABSTRACT
Metal catalyzed asymmetric oxidation of prochiral sulfides is one of the prevailing strategies to produce enantiopure sulfoxides. Keeping in view the reported reactivity of peroxo vanadium complexes towards asymmetric oxidation reactions, this study explores the reactivity of vanadia represented as a VO4 cluster with CH3-S-Ph through DFT computations. The mechanism of the oxidation of sulfides to sulfoxides with unsupported VO4 is thoroughly investigated. The chiral centre in the VO4 cluster is introduced by grafting it on an SBA-15 support and two conformers of the supported cluster are thus obtained. The study was extended to locate transition states for the reaction of each conformer with CH3-S-Ph. The large enantiomeric excess obtained from the energy difference of the transition states confirms the formation of enantiopure sulfoxide. Analysis of the computational results provides a rational explanation for the observed enantioselectivity, which is remarkable. The optical stability as well as asymmetry of chiral sulfoxides obtained by the current approach has been further confirmed by locating the planar transition state, through which conversion from one enantiomer to another takes place. The calculations suggest that transition between the two enantiomers of sulfoxide is hampered by sufficiently high inversion barriers.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: India