Your browser doesn't support javascript.
loading
Supramolecular Self-Assembly and Dual-Switch Vapochromic, Vapoluminescent, and Resistive Memory Behaviors of Amphiphilic Platinum(II) Complexes.
Li, Yongguang; Chen, Ling; Ai, Yeye; Hong, Eugene Yau-Hin; Chan, Alan Kwun-Wa; Yam, Vivian Wing-Wah.
Afiliación
  • Li Y; Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China.
  • Chen L; Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China.
  • Ai Y; Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China.
  • Hong EY; Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, P. R. China.
  • Chan AK; Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, P. R. China.
  • Yam VW; Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China.
J Am Chem Soc ; 139(39): 13858-13866, 2017 10 04.
Article en En | MEDLINE | ID: mdl-28933841
ABSTRACT
A series of amphiphilic platinum(II) complexes with tridentate N-donor ligands has been synthesized and characterized. Different supramolecular architectures are constructed using the amphiphilic molecules as the building blocks through the formation of Pt···Pt and π-π stacking interactions in aqueous media. The aggregation-deaggregation-aggregation self-assembly behavior together with obvious spectroscopic changes could be fine-tuned by the addition of THF in aqueous media. More interestingly, one of the complexes is found to show fast response and high selectivity toward alcohol and water vapors with good reversibility, leading to drastic color and luminescence changes, and hence unique dual switching behavior, with the water molecules readily displaced by the alcohol vapor. Rapid writing and erasure have been realized via the control of a jet or a stream of alcohol vapor flow. In addition, it has been employed as active materials in the fabrication of small-molecule solution-processable resistive memory devices, exhibiting stable and promising binary memory performance with threshold voltages of ca. 3.4 V, high ON/OFF ratios of up to 105 and long retention times of over 104 s. The vapochromic and vapoluminescent materials are demonstrated to have potential applications in chemosensing, logic gates, VOC monitoring, and memory functions.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2017 Tipo del documento: Article