Your browser doesn't support javascript.
loading
Bioengineering a Single-Protein Junction.
Ruiz, Marta P; Aragonès, Albert C; Camarero, Nuria; Vilhena, J G; Ortega, Maria; Zotti, Linda A; Pérez, Rubén; Cuevas, Juan Carlos; Gorostiza, Pau; Díez-Pérez, Ismael.
Afiliación
  • Ruiz MP; Departament of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona , Martí i Franquès, 1, Barcelona 08028, Spain.
  • Aragonès AC; Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona 08028, Spain.
  • Camarero N; Centro Investigación Biomédica en Red (CIBER-BBN) , Campus Río Ebro-Edificio I+D, Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain.
  • Vilhena JG; Departament of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona , Martí i Franquès, 1, Barcelona 08028, Spain.
  • Ortega M; Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona 08028, Spain.
  • Zotti LA; Centro Investigación Biomédica en Red (CIBER-BBN) , Campus Río Ebro-Edificio I+D, Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain.
  • Pérez R; Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona 08028, Spain.
  • Cuevas JC; Centro Investigación Biomédica en Red (CIBER-BBN) , Campus Río Ebro-Edificio I+D, Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain.
  • Gorostiza P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid , E-28049 Madrid, Spain.
  • Díez-Pérez I; Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas , 28049 Cantoblanco, Madrid, Spain.
J Am Chem Soc ; 139(43): 15337-15346, 2017 11 01.
Article en En | MEDLINE | ID: mdl-28981262
ABSTRACT
Bioelectronics moves toward designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated two-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Azurina / Ingeniería de Proteínas Idioma: En Revista: J Am Chem Soc Año: 2017 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Azurina / Ingeniería de Proteínas Idioma: En Revista: J Am Chem Soc Año: 2017 Tipo del documento: Article País de afiliación: España