Your browser doesn't support javascript.
loading
MALDIrppa: quality control and robust analysis for mass spectrometry data.
Palarea-Albaladejo, Javier; Mclean, Kevin; Wright, Frank; Smith, David G E.
Afiliación
  • Palarea-Albaladejo J; Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
  • Mclean K; Proteomics Facility Services, Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Mid Lothian, EH26 0PZ, UK.
  • Wright F; Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
  • Smith DGE; Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
Bioinformatics ; 34(3): 522-523, 2018 02 01.
Article en En | MEDLINE | ID: mdl-29028890
Summary: This R package helps to implement a robust approach to deal with mass spectrometry (MS) data. It is aimed at alleviating reproducibility issues and pernicious effects of deviating signals on both data pre-processing and downstream data analysis. Based on robust statistical methods, it facilitates the identification and filtering of low-quality mass spectra and atypical peak profiles as well as monitoring and data handling through pre-processing, which extends existing computational tools for high-throughput data. Availability and implementation: MALDIrppa is implemented as a package for the R environment for data analysis and it is freely available to download from the CRAN repository at https://CRAN.R-project.org/package=MALDIrppa. Contact: javier.palarea@bioss.ac.uk.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Control de Calidad / Espectrometría de Masas / Programas Informáticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Control de Calidad / Espectrometría de Masas / Programas Informáticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article