Your browser doesn't support javascript.
loading
ASElux: an ultra-fast and accurate allelic reads counter.
Miao, Zong; Alvarez, Marcus; Pajukanta, Päivi; Ko, Arthur.
Afiliación
  • Miao Z; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
  • Alvarez M; Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA 90024, USA.
  • Pajukanta P; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
  • Ko A; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
Bioinformatics ; 34(8): 1313-1320, 2018 04 15.
Article en En | MEDLINE | ID: mdl-29186329
Motivation: Mapping bias causes preferential alignment to the reference allele, forming a major obstacle in allele-specific expression (ASE) analysis. The existing methods, such as simulation and SNP-aware alignment, are either inaccurate or relatively slow. To fast and accurately count allelic reads for ASE analysis, we developed a novel approach, ASElux, which utilizes the personal SNP information and counts allelic reads directly from unmapped RNA-sequence (RNA-seq) data. ASElux significantly reduces runtime by disregarding reads outside single nucleotide polymorphisms (SNPs) during the alignment. Results: When compared to other tools on simulated and experimental data, ASElux achieves a higher accuracy on ASE estimation than non-SNP-aware aligners and requires a much shorter time than the benchmark SNP-aware aligner, GSNAP with just a slight loss in performance. ASElux can process 40 million read-pairs from an RNA-sequence (RNA-seq) sample and count allelic reads within 10 min, which is comparable to directly counting the allelic reads from alignments based on other tools. Furthermore, processing an RNA-seq sample using ASElux in conjunction with a general aligner, such as STAR, is more accurate and still ∼4× faster than STAR + WASP, and ∼33× faster than the lead SNP-aware aligner, GSNAP, making ASElux ideal for ASE analysis of large-scale transcriptomic studies. We applied ASElux to 273 lung RNA-seq samples from GTEx and identified a splice-QTL rs11078928 in lung which explains the mechanism underlying an asthma GWAS SNP rs11078927. Thus, our analysis demonstrated ASE as a highly powerful complementary tool to cis-expression quantitative trait locus (eQTL) analysis. Availability and implementation: The software can be downloaded from https://github.com/abl0719/ASElux. Contact: zmiao@ucla.edu or a5ko@ucla.edu. Supplementary information: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Perfilación de la Expresión Génica / Polimorfismo de Nucleótido Simple / Sitios de Carácter Cuantitativo / Alelos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Perfilación de la Expresión Génica / Polimorfismo de Nucleótido Simple / Sitios de Carácter Cuantitativo / Alelos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos