Your browser doesn't support javascript.
loading
Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT.
Sauppe, Sebastian; Kuhm, Julian; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc.
Afiliación
  • Sauppe S; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. Medical Faculty, Ruprecht-Karls-University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
Phys Med Biol ; 63(3): 035032, 2018 02 02.
Article en En | MEDLINE | ID: mdl-29235989
ABSTRACT
We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method. The switch implies an MVF-resampling, which makes them amplitude-specific. PTAR ensures that the MVFs, which have been estimated on phase-gated reconstructions, are still valid for all amplitude-gated reconstructions. To validate the method, we use an artificially deformed clinical CT scan with a realistic breathing pattern and several patient data sets acquired with a TrueBeamTM integrated imaging system (Varian Medical Systems, Palo Alto, CA, USA). Motion blurring, which still occurs around the area of the diaphragm or at small vessels above the diaphragm in artifact-specific cyclic motion compensation (acMoCo) images based on phase-gating, is significantly reduced by PTAR. Also, small lung structures appear sharper in the images. This is demonstrated both for simulated and real patient data. A quantification of the sharpness of the diaphragm confirms these findings. PTAR improves the image quality of 4D MoCo reconstructions compared to conventional phase-gated MoCo images, in particular for irregular breathing patterns. Thus, PTAR increases the robustness of MoCo reconstructions for CBCT. Because PTAR does not require any additional steps for the MVF estimation, it is computationally efficient. Our method is not restricted to CBCT but could rather be applied to other image modalities.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Fantasmas de Imagen / Tomografía Computarizada de Haz Cónico / Tomografía Computarizada Cuatridimensional / Neoplasias Pulmonares / Movimiento Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Fantasmas de Imagen / Tomografía Computarizada de Haz Cónico / Tomografía Computarizada Cuatridimensional / Neoplasias Pulmonares / Movimiento Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article País de afiliación: Alemania