Your browser doesn't support javascript.
loading
A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.
Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D.
Afiliación
  • Lange M; Physikalisches Institut-Experimentalphysik II and Center for Quantum Science (CQ) in LISA, Universität Tübingen, D-72076 Tübingen, Germany.
  • Guénon S; Physikalisches Institut-Experimentalphysik II and Center for Quantum Science (CQ) in LISA, Universität Tübingen, D-72076 Tübingen, Germany.
  • Lever F; Physikalisches Institut-Experimentalphysik II and Center for Quantum Science (CQ) in LISA, Universität Tübingen, D-72076 Tübingen, Germany.
  • Kleiner R; Physikalisches Institut-Experimentalphysik II and Center for Quantum Science (CQ) in LISA, Universität Tübingen, D-72076 Tübingen, Germany.
  • Koelle D; Physikalisches Institut-Experimentalphysik II and Center for Quantum Science (CQ) in LISA, Universität Tübingen, D-72076 Tübingen, Germany.
Rev Sci Instrum ; 88(12): 123705, 2017 Dec.
Article en En | MEDLINE | ID: mdl-29289195
Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2017 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2017 Tipo del documento: Article País de afiliación: Alemania