Your browser doesn't support javascript.
loading
Mechanisms Underlying Chronic Binge Alcohol Exposure-Induced Uterine Artery Dysfunction in Pregnant Rat.
Naik, Vishal D; Davis-Anderson, Katie; Subramanian, Kaviarasan; Lunde-Young, Raine; Nemec, Matthew J; Ramadoss, Jayanth.
Afiliación
  • Naik VD; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
  • Davis-Anderson K; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
  • Subramanian K; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas.
  • Lunde-Young R; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
  • Nemec MJ; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
  • Ramadoss J; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.
Alcohol Clin Exp Res ; 42(4): 682-690, 2018 Apr.
Article en En | MEDLINE | ID: mdl-29363778
BACKGROUND: A cardinal feature of fetal alcohol syndrome is growth restriction. Maternal uterine artery adaptations to pregnancy correlate with birthweight and survival. We hypothesized that gestational binge alcohol exposure impairs maternal uterine vascular function, affecting endothelial nitric oxide (NO)-mediated vasodilation. METHODS: Pregnant rats grouped as pair-fed control or binge alcohol exposed received a once-daily, orogastric gavage of isocaloric maltose-dextrin or alcohol, respectively. On gestational day 20, primary uterine arteries were isolated, cannulated, and connected to a pressure transducer, and functional studies were conducted by dual-chamber arteriography. Uterine arteries maintained at constant intramural pressure (90 mm Hg) were maximally constricted with thromboxane, and a dose-response for acetylcholine (Ach) was recorded. RESULTS: The alcohol group exhibited significantly impaired endothelium-dependent, Ach-induced uterine artery relaxation (↓∼30%). Subsequently, a dose-response was recorded following inhibition of endothelium-derived hyperpolarizing factor (apamin and TRAM-34) and prostacyclin (indomethacin). Ach-induced relaxation in the pair-fed control decreased by ~46%, and interestingly, relaxation in alcohol group further decreased by an additional ~48%, demonstrating that gestational binge alcohol impairs the NO system in the primary uterine artery. An endothelium-independent sodium nitroprusside effect was not observed. Immunoblotting indicated that alcohol decreased the level of endothelial excitatory P-Ser1177 endothelial NO synthase (eNOS) (p < 0.05) and total eNOS expression (p < 0.05) compared to both the normal and pair-fed controls. P-Ser1177 eNOS level was also confirmed by immunofluorescence imaging. CONCLUSIONS: This is the first study to demonstrate maternal binge alcohol consumption during pregnancy disrupts uterine artery vascular function via impairment of the eNOS vasodilatory system.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vasodilatación / Etanol / Óxido Nítrico Sintasa de Tipo III / Arteria Uterina / Consumo Excesivo de Bebidas Alcohólicas Límite: Animals / Pregnancy Idioma: En Revista: Alcohol Clin Exp Res Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Vasodilatación / Etanol / Óxido Nítrico Sintasa de Tipo III / Arteria Uterina / Consumo Excesivo de Bebidas Alcohólicas Límite: Animals / Pregnancy Idioma: En Revista: Alcohol Clin Exp Res Año: 2018 Tipo del documento: Article