Your browser doesn't support javascript.
loading
Extraction of large-scale structural covariance networks from grey matter volume for Parkinson's disease classification.
Lee, Pei-Lin; Chou, Kun-Hsien; Lu, Cheng-Hsien; Chen, Hsiu-Ling; Tsai, Nai-Wen; Hsu, Ai-Ling; Chen, Meng-Hsiang; Lin, Wei-Che; Lin, Ching-Po.
Afiliación
  • Lee PL; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
  • Chou KH; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
  • Lu CH; Institute of Neuroscience, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Peitou, Taipei, Taiwan.
  • Chen HL; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
  • Tsai NW; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
  • Hsu AL; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
  • Chen MH; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
  • Lin WC; Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, Taiwan.
  • Lin CP; Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung, Taiwan. u64lin@yahoo.com.tw.
Eur Radiol ; 28(8): 3296-3305, 2018 Aug.
Article en En | MEDLINE | ID: mdl-29532237
OBJECTIVES: To identify disease-related spatial covariance patterns of grey matter volume as an aid in the classification of Parkinson's disease (PD). METHODS: Seventy structural covariance networks (SCNs) based on grey matter volume covariance patterns were defined using independent component analysis with T1-weighted structural MRI scans (discovery sample, 70 PD patients and 70 healthy controls). An image-based classifier was constructed from SCNs using a multiple logistic regression analysis with a leave-one-out cross-validation-based feature selection scheme. A validation sample (26 PD patients and 26 healthy controls) was further collected to evaluate the generalization ability of the constructed classifier. RESULTS: In the discovery sample, 13 SCNs, including the cerebellum, anterior temporal poles, parahippocampal gyrus, parietal operculum, occipital lobes, supramarginal gyri, superior parietal lobes, paracingulate gyri and precentral gyri, had higher classification performance for PD. In the validation sample, the classifier had moderate generalization ability, with a mean sensitivity of 81%, specificity of 69% and overall accuracy of 75%. Furthermore, certain individual SCNs were also associated with disease severity. CONCLUSIONS: Although not applicable for routine care at present, our results provide empirical evidence that disease-specific, large-scale structural networks can provide a foundation for the further improvement of diagnostic MRI in movement disorders. KEY POINTS: • Disease-specific, large-scale SCNs can be identified from structural MRI. • A new network-based framework for PD classification is proposed. • An SCN-based classifier had moderate generalization ability in PD classification. • The selected SCNs provide valuable functional information regarding PD patients.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Sustancia Gris Tipo de estudio: Diagnostic_studies / Evaluation_studies / Observational_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Sustancia Gris Tipo de estudio: Diagnostic_studies / Evaluation_studies / Observational_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Eur Radiol Asunto de la revista: RADIOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Taiwán