Your browser doesn't support javascript.
loading
Unfolding of a ClC chloride transporter retains memory of its evolutionary history.
Min, Duyoung; Jefferson, Robert E; Qi, Yifei; Wang, Jing Yang; Arbing, Mark A; Im, Wonpil; Bowie, James U.
Afiliación
  • Min D; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
  • Jefferson RE; UCLA-DOE and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
  • Qi Y; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
  • Wang JY; UCLA-DOE and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
  • Arbing MA; School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
  • Im W; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
  • Bowie JU; UCLA-DOE and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
Nat Chem Biol ; 14(5): 489-496, 2018 05.
Article en En | MEDLINE | ID: mdl-29581582
ABSTRACT
ClC chloride channels and transporters are important for chloride homeostasis in species from bacteria to human. Mutations in ClC proteins cause genetically inherited diseases, some of which are likely to involve folding defects. The ClC proteins present a challenging and unusual biological folding problem because they are large membrane proteins possessing a complex architecture, with many reentrant helices that go only partway through membrane and loop back out. Here we were able to examine the unfolding of the Escherichia coli ClC transporter, ClC-ec1, using single-molecule forced unfolding methods. We found that the protein could be separated into two stable halves that unfolded independently. The independence of the two domains is consistent with an evolutionary model in which the two halves arose from independently folding subunits that later fused together. Maintaining smaller folding domains of lesser complexity within large membrane proteins may be an advantageous strategy to avoid misfolding traps.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cloruros / Canales de Cloruro / Escherichia coli Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cloruros / Canales de Cloruro / Escherichia coli Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos