Your browser doesn't support javascript.
loading
Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M1 Muscarinic Acetylcholine Receptors.
van der Westhuizen, Emma T; Spathis, Arthur; Khajehali, Elham; Jörg, Manuela; Mistry, Shailesh N; Capuano, Ben; Tobin, Andrew B; Sexton, Patrick M; Scammells, Peter J; Valant, Celine; Christopoulos, Arthur.
Afiliación
  • van der Westhuizen ET; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Spathis A; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Khajehali E; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Jörg M; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Mistry SN; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Capuano B; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Tobin AB; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Sexton PM; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Scammells PJ; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Valant C; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
  • Christopoulos A; Drug Discovery Biology (E.T.W., A.S., E.K., P.M.S., C.V., A.C.) and Medicinal Chemistry (M.J., S.N.M., B.C., P.J.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Bi
Mol Pharmacol ; 94(1): 770-783, 2018 07.
Article en En | MEDLINE | ID: mdl-29691279
ABSTRACT
Positive allosteric modulators (PAMs) that target the M1 muscarinic acetylcholine (ACh) receptor (M1 mAChR) are potential treatments for cognitive deficits in conditions such as Alzheimer disease and schizophrenia. We recently reported novel 4-phenylpyridine-2-one and 6-phenylpyrimidin-4-one M1 mAChR PAMs with the potential to display different modes of positive allosteric modulation and/or agonism but whose molecular mechanisms of action remain undetermined. The current study compared the pharmacology of three such novel PAMs with the prototypical first-generation PAM, benzyl quinolone carboxylic acid (BQCA), in a recombinant Chinese hamster ovary (CHO) cell line stably expressing the human M1 mAChR. Interactions between the orthosteric agonists and the novel PAMs or BQCA suggested their allosteric effects were solely governed by modulation of agonist affinity. The greatest degree of positive co-operativity was observed with higher efficacy agonists, whereas minimal potentiation was observed when the modulators were tested against the lower efficacy agonist, xanomeline. Each PAM was investigated for its effects on the endogenous agonist ACh on three different signaling pathways [extracellular signal-regulated kinases 1/2 phosphorylation, inositol monophosphate (IP1) accumulation, and ß-arrestin-2 recruitment], revealing that the allosteric potentiation generally tracked with the efficiency of stimulus-response coupling, and that there was little pathway bias in the allosteric effects. Thus, despite the identification of novel allosteric scaffolds targeting the M1 mAChR, the molecular mechanism of action of these compounds is largely consistent with a model of allostery previously described for BQCA, suggesting that this may be a more generalized mechanism for M1 mAChR PAM effects than previously appreciated.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Piridonas / Receptor Muscarínico M1 / Regulación Alostérica Límite: Animals / Humans Idioma: En Revista: Mol Pharmacol Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Piridonas / Receptor Muscarínico M1 / Regulación Alostérica Límite: Animals / Humans Idioma: En Revista: Mol Pharmacol Año: 2018 Tipo del documento: Article