Your browser doesn't support javascript.
loading
Bitopic Binding Mode of an M1 Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes.
Bradley, Sophie J; Molloy, Colin; Bundgaard, Christoffer; Mogg, Adrian J; Thompson, Karen J; Dwomoh, Louis; Sanger, Helen E; Crabtree, Michael D; Brooke, Simon M; Sexton, Patrick M; Felder, Christian C; Christopoulos, Arthur; Broad, Lisa M; Tobin, Andrew B; Langmead, Christopher J.
Afiliación
  • Bradley SJ; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Molloy C; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Bundgaard C; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Mogg AJ; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Thompson KJ; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Dwomoh L; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Sanger HE; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Crabtree MD; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Brooke SM; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Sexton PM; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Felder CC; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Christopoulos A; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Broad LM; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Tobin AB; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
  • Langmead CJ; The Centre for Translational Pharmacology, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland (S.J.B., C.M., K.J.T., L.D., S.M.B., A.B.T.); Eli Lilly & Co. Neuroscience, Windlesham, Surrey, United Kingdom
Mol Pharmacol ; 93(6): 645-656, 2018 06.
Article en En | MEDLINE | ID: mdl-29695609
ABSTRACT
The realization of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702 (7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one), described previously as a potent M1 receptor allosteric agonist, which showed procognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702, together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. Although they impart beneficial effects on learning and memory, we conclude that these properties are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data support the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Acetilcolina / Receptores Muscarínicos / Agonistas Muscarínicos / Receptor Muscarínico M1 Tipo de estudio: Risk_factors_studies Límite: Animals / Humans / Male Idioma: En Revista: Mol Pharmacol Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Acetilcolina / Receptores Muscarínicos / Agonistas Muscarínicos / Receptor Muscarínico M1 Tipo de estudio: Risk_factors_studies Límite: Animals / Humans / Male Idioma: En Revista: Mol Pharmacol Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido