Your browser doesn't support javascript.
loading
Automated Error Detection in Physiotherapy Training.
Jovanovic, Marko; Seiffarth, Johannes; Kutafina, Ekaterina; Jonas, Stephan M.
Afiliación
  • Jovanovic M; Department of Medical Informatics, Uniklinik RWTH Aachen, Aachen, Germany.
  • Seiffarth J; Department of Medical Informatics, Uniklinik RWTH Aachen, Aachen, Germany.
  • Kutafina E; Department of Medical Informatics, Uniklinik RWTH Aachen, Aachen, Germany.
  • Jonas SM; Department of Medical Informatics, Uniklinik RWTH Aachen, Aachen, Germany.
Stud Health Technol Inform ; 248: 164-171, 2018.
Article en En | MEDLINE | ID: mdl-29726433
BACKGROUND: Manual skills teaching, such as physiotherapy education, requires immediate teacher feedback for the students during the learning process, which to date can only be performed by expert trainers. OBJECTIVES: A machine-learning system trained only on correct performances to classify and score performed movements, to identify sources of errors in the movement and give feedback to the learner. METHODS: We acquire IMU and sEMG sensor data from a commercial-grade wearable device and construct an HMM-based model for gesture classification, scoring and feedback giving. We evaluate the model on publicly available and self-generated data of an exemplary movement pattern executions. RESULTS: The model achieves an overall accuracy of 90.71% on the public dataset and 98.9% on our dataset. An AUC of 0.99 for the ROC of the scoring method could be achieved to discriminate between correct and untrained incorrect executions. CONCLUSION: The proposed system demonstrated its suitability for scoring and feedback in manual skills training.
Asunto(s)
Palabras clave
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Modalidades de Fisioterapia / Retroalimentación / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2018 Tipo del documento: Article País de afiliación: Alemania
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Modalidades de Fisioterapia / Retroalimentación / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2018 Tipo del documento: Article País de afiliación: Alemania