Your browser doesn't support javascript.
loading
The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and In Vivo.
Wahba, Amy; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J.
Afiliación
  • Wahba A; Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
  • Rath BH; Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
  • O'Neill JW; Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
  • Camphausen K; Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland.
  • Tofilon PJ; Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland. tofilonp@mail.nih.gov.
Mol Cancer Ther ; 17(8): 1717-1726, 2018 08.
Article en En | MEDLINE | ID: mdl-29866745
ABSTRACT
Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSC) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of clinically relevant XPO1 inhibitor selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. On the basis of γH2AX foci and neutral comet analyses, selinexor inhibited the repair of radiation-induced DNA double-strand breaks in GSCs, suggesting that the selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the in vivo response to selinexor and radiation. Treatment of mice bearing orthotopic xenografts with selinexor decreased tumor translational efficiency as determined from polysome profiles. Although selinexor treatment alone had no effect on the survival of mice with brain tumors, it significantly enhanced the radiation-induced prolongation of survival. These results indicate that selinexor enhances the radiosensitivity of glioblastoma cells and suggest that this effect involves the global inhibition of gene translation. Mol Cancer Ther; 17(8); 1717-26. ©2018 AACR.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Triazoles / Neoplasias Encefálicas / Glioblastoma / Hidrazinas Límite: Animals / Female / Humans Idioma: En Revista: Mol Cancer Ther Asunto de la revista: ANTINEOPLASICOS Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Triazoles / Neoplasias Encefálicas / Glioblastoma / Hidrazinas Límite: Animals / Female / Humans Idioma: En Revista: Mol Cancer Ther Asunto de la revista: ANTINEOPLASICOS Año: 2018 Tipo del documento: Article