Your browser doesn't support javascript.
loading
Cover-Encodings of Fitness Landscapes.
Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.
Afiliación
  • Klemm K; IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain.
  • Mehta A; Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany.
  • Stadler PF; Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103, Leipzig, Germany. studla@bioinf.uni-leipzig.de.
Bull Math Biol ; 80(8): 2154-2176, 2018 08.
Article en En | MEDLINE | ID: mdl-29948882
The traditional way of tackling discrete optimization problems is by using local search on suitably defined cost or fitness landscapes. Such approaches are however limited by the slowing down that occurs when the local minima that are a feature of the typically rugged landscapes encountered arrest the progress of the search process. Another way of tackling optimization problems is by the use of heuristic approximations to estimate a global cost minimum. Here, we present a combination of these two approaches by using cover-encoding maps which map processes from a larger search space to subsets of the original search space. The key idea is to construct cover-encoding maps with the help of suitable heuristics that single out near-optimal solutions and result in landscapes on the larger search space that no longer exhibit trapping local minima. We present cover-encoding maps for the problems of the traveling salesman, number partitioning, maximum matching and maximum clique; the practical feasibility of our method is demonstrated by simulations of adaptive walks on the corresponding encoded landscapes which find the global minima for these problems.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Evolución Biológica / Aptitud Genética / Modelos Biológicos Idioma: En Revista: Bull Math Biol Año: 2018 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Evolución Biológica / Aptitud Genética / Modelos Biológicos Idioma: En Revista: Bull Math Biol Año: 2018 Tipo del documento: Article País de afiliación: España