Your browser doesn't support javascript.
loading
The Dimer-of-Trimers Assembly Prevents Catalysis at the Transferase Site of Prokaryotic FAD Synthase.
Lans, Isaias; Seco, Juan; Serrano, Ana; Burbano, Ricardo; Cossio, Pilar; Daza, Martha C; Medina, Milagros.
Afiliación
  • Lans I; Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia; Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia. Electronic address: grupobiotd.posdoc@udea.edu.co.
  • Seco J; Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia.
  • Serrano A; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, Zaragoza, Spain.
  • Burbano R; Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia.
  • Cossio P; Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
  • Daza MC; Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia.
  • Medina M; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, Zaragoza, Spain. Electronic address: mmedina@unizar.es.
Biophys J ; 115(6): 988-995, 2018 09 18.
Article en En | MEDLINE | ID: mdl-30177440
ABSTRACT
Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMNadenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg2+ and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biocatálisis / Multimerización de Proteína / Nucleotidiltransferasas Idioma: En Revista: Biophys J Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Biocatálisis / Multimerización de Proteína / Nucleotidiltransferasas Idioma: En Revista: Biophys J Año: 2018 Tipo del documento: Article