Your browser doesn't support javascript.
loading
Role of miR-148a in Mitigating Hepatic Ischemia-Reperfusion Injury by Repressing the TLR4 Signaling Pathway via Targeting CaMKIIα in Vivo and in Vitro.
Zheng, Daofeng; Li, Zhongtang; Wei, Xufu; Liu, Rui; Shen, Ai; He, Diao; Tang, Chengyong; Wu, Zhongjun.
Afiliación
  • Zheng D; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Li Z; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Wei X; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Liu R; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Shen A; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • He D; Department of Hepatobiliary surgery, Chongqing Cancer Institute, Chongqing, China.
  • Tang C; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.
  • Wu Z; Department of Clinical Pharmacology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Cell Physiol Biochem ; 49(5): 2060-2072, 2018.
Article en En | MEDLINE | ID: mdl-30244246
ABSTRACT
BACKGROUND/

AIMS:

Hepatic ischemia-reperfusion (I/R) injury, which is mainly induced by inflammation and unstable intracellular ions, is a major negative consequence of surgery that compromises hepatic function. However, the exact mechanisms of liver I/R injury have not been determined. Positive crosstalk with the Ca2+/CaMKII pathway is required for complete activation of the TLR4 pathway and inflammation. We previously found that miR-148a, which decreased in abundance with increasing reperfusion time, targeted and repressed the expression of CaMKIIα. In the present study, we examined the role of the miR-148a machinery in I/R-induced Ca2+/CaMKII and TLR4 signaling changes, inflammation, and liver dysfunction in vivo and in vitro.

METHODS:

Liver function was evaluated by serum aminotransferase levels and hematoxylin-eosin (HE) staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay. Gene and protein expression were assessed by RT-PCR and western blot. Small interfering RNA was used to silence target gene expression. HE staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to measure hepatic tissue apoptosis. These assays were performed to identify factors upregulated in hepatic I/R injury and downregulated by miR-148a.

RESULTS:

We manifested that expression of CaMKIIα and phosphorylation of TAK1 and IRF3 were elevated in hypoxia/reoxygenation (H/R)-treated primary Kupffer cells (KCs) and liver tissue of I/R-treated mice, but these effects were attenuated by treatment with miR-148a mimic and were accompanied by the alleviation of liver dysfunction and hepatocellular apoptosis. Luciferase reporter experiments showed that miR148a suppressed luciferase activity by almost 60%. Moreover, knockdown of CaMKIIα in H/R KCs led to significant deficiencies in p-TAK1, P-IRF3, IL-6, and TNF-α, which was consistent with the effects of miR-148a overexpression. Otherwise, the same trend of activation of TAK1 and IRF3 and inflammatory factors in vitro was observed in the siTAK1 + siIRF3 group compared with the siCaMKIIα group.

CONCLUSION:

Taken together, we conclude that miR-148a may mitigate hepatic I/R injury by ameliorating TLR4-mediated inflammation via targeting CaMKIIα in vitro and in vivo.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño por Reperfusión / MicroARNs / Receptor Toll-Like 4 / Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Physiol Biochem Asunto de la revista: BIOQUIMICA / FARMACOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Daño por Reperfusión / MicroARNs / Receptor Toll-Like 4 / Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Physiol Biochem Asunto de la revista: BIOQUIMICA / FARMACOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: China