Practical Model Selection for Prospective Virtual Screening.
J Chem Inf Model
; 59(1): 282-293, 2019 01 28.
Article
en En
| MEDLINE
| ID: mdl-30500183
Virtual (computational) high-throughput screening provides a strategy for prioritizing compounds for experimental screens, but the choice of virtual screening algorithm depends on the data set and evaluation strategy. We consider a wide range of ligand-based machine learning and docking-based approaches for virtual screening on two protein-protein interactions, PriA-SSB and RMI-FANCM, and present a strategy for choosing which algorithm is best for prospective compound prioritization. Our workflow identifies a random forest as the best algorithm for these targets over more sophisticated neural network-based models. The top 250 predictions from our selected random forest recover 37 of the 54 active compounds from a library of 22,434 new molecules assayed on PriA-SSB. We show that virtual screening methods that perform well on public data sets and synthetic benchmarks, like multi-task neural networks, may not always translate to prospective screening performance on a specific assay of interest.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Evaluación Preclínica de Medicamentos
/
Simulación del Acoplamiento Molecular
/
Aprendizaje Automático
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Risk_factors_studies
/
Screening_studies
Idioma:
En
Revista:
J Chem Inf Model
Asunto de la revista:
INFORMATICA MEDICA
/
QUIMICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos