Your browser doesn't support javascript.
loading
Strong-correlation induced high-mobility electrons in Dirac semimetal of perovskite oxide.
Fujioka, J; Yamada, R; Kawamura, M; Sakai, S; Hirayama, M; Arita, R; Okawa, T; Hashizume, D; Hoshino, M; Tokura, Y.
Afiliación
  • Fujioka J; Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan. fujioka@ims.tsukuba.ac.jp.
  • Yamada R; PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan. fujioka@ims.tsukuba.ac.jp.
  • Kawamura M; Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan. fujioka@ims.tsukuba.ac.jp.
  • Sakai S; Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan.
  • Hirayama M; RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
  • Arita R; RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
  • Okawa T; RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
  • Hashizume D; Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan.
  • Hoshino M; RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
  • Tokura Y; Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan.
Nat Commun ; 10(1): 362, 2019 01 21.
Article en En | MEDLINE | ID: mdl-30664632
ABSTRACT
Electrons in conventional metals become less mobile under the influence of electron correlation. Contrary to this empirical knowledge, we report here that electrons with the highest mobility ever found in known bulk oxide semiconductors emerge in the strong-correlation regime of the Dirac semimetal of perovskite CaIrO3. The transport measurements reveal that the high mobility exceeding 60,000 cm2V-1s-1 originates from the proximity of the Fermi energy to the Dirac node (ΔE < 10 meV). The calculation based on the density functional theory and the dynamical mean field theory reveals that the energy difference becomes smaller as the system approaches the Mott transition, highlighting a crucial role of correlation effects cooperating with the spin-orbit coupling. The correlation-induced self-tuning of Dirac node enables the quantum limit at a modest magnetic field with a giant magnetoresistance, thus providing an ideal platform to study the novel phenomena of correlated Dirac electron.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Japón