Your browser doesn't support javascript.
loading
Fast Subgraph Matching Strategies Based on Pattern-Only Heuristics.
Aparo, Antonino; Bonnici, Vincenzo; Micale, Giovanni; Ferro, Alfredo; Shasha, Dennis; Pulvirenti, Alfredo; Giugno, Rosalba.
Afiliación
  • Aparo A; Department of Computer Science, University of Verona, Verona, Italy.
  • Bonnici V; Department of Computer Science, University of Verona, Verona, Italy.
  • Micale G; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
  • Ferro A; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
  • Shasha D; Computer Science Department, Courant Institute, New York University, New York, USA.
  • Pulvirenti A; Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
  • Giugno R; Department of Computer Science, University of Verona, Verona, Italy. rosalba.giugno@univr.it.
Interdiscip Sci ; 11(1): 21-32, 2019 Mar.
Article en En | MEDLINE | ID: mdl-30790228
Many scientific applications entail solving the subgraph isomorphism problem, i.e., given an input pattern graph, find all the subgraphs of a (usually much larger) target graph that are structurally equivalent to that input. Because subgraph isomorphism is NP-complete, methods to solve it have to use heuristics. This work evaluates subgraph isomorphism methods to assess their computational behavior on a wide range of synthetic and real graphs. Surprisingly, our experiments show that, among the leading algorithms, certain heuristics based only on pattern graphs are the most efficient.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Heurística Computacional Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Algoritmos / Biología Computacional / Heurística Computacional Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Italia