Your browser doesn't support javascript.
loading
Identification of circadian rhythms in Nannochloropsis species using bioluminescence reporter lines.
Poliner, Eric; Cummings, Cameron; Newton, Linsey; Farré, Eva M.
Afiliación
  • Poliner E; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA.
  • Cummings C; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
  • Newton L; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
  • Farré EM; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA.
Plant J ; 99(1): 112-127, 2019 07.
Article en En | MEDLINE | ID: mdl-30883973
Circadian clocks allow organisms to predict environmental changes caused by the rotation of the Earth. Although circadian rhythms are widespread among different taxa, the core components of circadian oscillators are not conserved and differ between bacteria, plants, animals and fungi. Stramenopiles are a large group of organisms in which circadian rhythms have been only poorly characterized and no clock components have been identified. We have investigated cell division and molecular rhythms in Nannochloropsis species. In the four strains tested, cell division occurred principally during the night period under diel conditions; however, these rhythms damped within 2-3 days after transfer to constant light. We developed firefly luciferase reporters for the long-term monitoring of in vivo transcriptional rhythms in two Nannochlropsis species, Nannochloropsis oceanica CCMP1779 and Nannochloropsis salina CCMP537. The reporter lines express anticipatory behavior under light/dark cycles and free-running bioluminescence rhythms with periods of ~21-31 h that damped within ~3-4 days under constant light. Using different entrainment regimes, we demonstrate that these rhythms are modulated by a circadian-type oscillator. In addition, the phase of free-running luminescence rhythms can be modulated pharmacologically using a CK1 ε/δ inhibitor, suggesting a role of this kinase in the Nannochloropsis clock. Together with the molecular and genomic tools available for Nannochloropsis species, these reporter lines represent an excellent system for future studies on the molecular mechanisms of stramenopile circadian oscillators.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ritmo Circadiano / Estramenopilos / Relojes Circadianos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Ritmo Circadiano / Estramenopilos / Relojes Circadianos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos