Your browser doesn't support javascript.
loading
Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
Kuhne, Jens; Vierock, Johannes; Tennigkeit, Stefan Alexander; Dreier, Max-Aylmer; Wietek, Jonas; Petersen, Dennis; Gavriljuk, Konstantin; El-Mashtoly, Samir F; Hegemann, Peter; Gerwert, Klaus.
Afiliación
  • Kuhne J; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Vierock J; Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
  • Tennigkeit SA; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Dreier MA; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Wietek J; Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
  • Petersen D; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Gavriljuk K; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • El-Mashtoly SF; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Hegemann P; Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany hegemann@rz.hu-berlin.de klaus.gerwert@bph.rub.de.
  • Gerwert K; Department of Biophysics, Ruhr-Universität Bochum, 44780 Bochum, Germany; hegemann@rz.hu-berlin.de klaus.gerwert@bph.rub.de.
Proc Natl Acad Sci U S A ; 116(19): 9380-9389, 2019 05 07.
Article en En | MEDLINE | ID: mdl-31004059
ABSTRACT
Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cationes / Channelrhodopsins Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Cationes / Channelrhodopsins Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Alemania