Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma.
Sci Rep
; 9(1): 7975, 2019 05 28.
Article
en En
| MEDLINE
| ID: mdl-31138828
Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Inteligencia Artificial
/
Redes Neurales de la Computación
/
Metaboloma
/
Mieloma Múltiple
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
/
Screening_studies
Límite:
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Sci Rep
Año:
2019
Tipo del documento:
Article
País de afiliación:
República Checa