Your browser doesn't support javascript.
loading
Tuning Porosity and Functionality of Electrospun Rubber Nanofiber Mats by Photo-Crosslinking.
Vitale, Alessandra; Massaglia, Giulia; Chiodoni, Angelica; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Quaglio, Marzia.
Afiliación
  • Vitale A; INSTM-Politecnico di Torino Research Unit , 50121 Firenze , Italy.
  • Massaglia G; Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy.
  • Chiodoni A; Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy.
  • Bongiovanni R; INSTM-Politecnico di Torino Research Unit , 50121 Firenze , Italy.
  • Pirri CF; Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy.
  • Quaglio M; Center for Sustainable Future Technologies @ PoliTo , Istituto Italiano di Tecnologia , 10129 Torino , Italy.
ACS Appl Mater Interfaces ; 11(27): 24544-24551, 2019 Jul 10.
Article en En | MEDLINE | ID: mdl-31199611
ABSTRACT
The present work proposes a versatile and efficient method to fabricate rubber nanofiber membranes with a controlled morphology and tailored functionality, based on the application of photoinduced thiol-ene cross-linking reactions to electrospun mats. Besides preventing the polymer cold flow and freezing the structure obtained by electrospinning, the photocuring step finely controls the morphology of the nanofiber mats, in terms of the fiber diameter up to the nanometer range and of the membrane porosity. Nanofiber membranes are also made chemically resistant, while retaining their flexibility. Finally, the proposed approach allows imparting specific functionalities to the rubber nanofibers the type and concentration of the functional groups can be precisely tuned by changing process parameters (i.e., thiol/ene stoichiometric ratio and irradiation dose). Active chemical groups that remain available on the surface of the nanofibers can be used for further material modifications, as here proven by two target reactions. This key result is also demonstrated with electrospun membranes embedded into a microfluidic chip, opening the way to advanced functional flexible devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article País de afiliación: Italia