Your browser doesn't support javascript.
loading
Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners.
Kaminska, I; Bohlen, J; Rocchetti, S; Selbach, F; Acuna, G P; Tinnefeld, P.
Afiliación
  • Kaminska I; Institute of Physical Chemistry of the Polish Academy of Sciences , 01-224 Warsaw , Poland.
  • Bohlen J; Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany.
  • Rocchetti S; Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany.
  • Selbach F; Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany.
  • Acuna GP; Department of Physics , Université de Fribourg , Ch. du Musée 3 , CH-1700 Fribourg , Switzerland.
  • Tinnefeld P; Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany.
Nano Lett ; 19(7): 4257-4262, 2019 07 10.
Article en En | MEDLINE | ID: mdl-31251640
ABSTRACT
Despite the thorough investigation of graphene since 2004, altering its surface chemistry and reproducible functionalization remain challenging. This hinders fabrication of more complex hybrid materials with controlled architectures, and as a consequence the development of sensitive and reliable sensors and biological assays. In this contribution, we introduce DNA origami structures as nanopositioners for placing single dye molecules at controlled distances from graphene. The measurements of fluorescence intensity and lifetime of single emitters carried out for distances ranging from 3 to 58 nm confirmed the d-4 dependence of the excitation energy transfer to graphene. Moreover, we determined the characteristic distance for 50% efficiency of the energy transfer from single dyes to graphene to be 17.7 nm. Using pyrene molecules as a glue to immobilize DNA origami nanostructures of various shape on graphene opens new possibilities to develop graphene-based biophysics and biosensing.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ADN / Transferencia Resonante de Energía de Fluorescencia / Nanoestructuras / Colorantes Fluorescentes Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ADN / Transferencia Resonante de Energía de Fluorescencia / Nanoestructuras / Colorantes Fluorescentes Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article País de afiliación: Polonia