Your browser doesn't support javascript.
loading
Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis.
Jackson, Megan N; Kaminsky, Corey J; Oh, Seokjoon; Melville, Jonathan F; Surendranath, Yogesh.
Afiliación
  • Jackson MN; Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
  • Kaminsky CJ; Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
  • Oh S; Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
  • Melville JF; Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
  • Surendranath Y; Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
J Am Chem Soc ; 141(36): 14160-14167, 2019 09 11.
Article en En | MEDLINE | ID: mdl-31353897
The efficient interconversion of electrical and chemical energy requires the intimate coupling of electrons and small-molecule substrates at catalyst active sites. In molecular electrocatalysis, the molecule acts as a redox mediator which typically undergoes oxidation or reduction in a separate step from substrate activation. These mediated pathways introduce a high-energy intermediate, cap the driving force for substrate activation at the reduction potential of the molecule, and impede access to high rates at low overpotentials. Here we show that electronically coupling a molecular hydrogen evolution catalyst to a graphitic electrode eliminates stepwise pathways and forces concerted electron transfer and proton binding. Electrochemical and X-ray absorption spectroscopy data establish that hydrogen evolution catalysis at the graphite-conjugated Rh molecule proceeds without first reducing the metal center. These results have broad implications for the molecular-level design of energy conversion catalysts.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos