Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS).
Sci Total Environ
; 691: 1155-1161, 2019 Nov 15.
Article
en En
| MEDLINE
| ID: mdl-31466197
The introduction of coniferous species in former deciduous forests may exert changes in soil organic matter, particularly in its molecular composition. In this work, pyrolysis-gas chromatography-mass spectrometry was used to study changes in SOM quality related to the centennial afforestation of Scots pine in an area formerly covered by European beech forest in the NE-flank of the Moncayo Natural Park (NE-Spain). For each soil profile three organic layers (fresh litter, fragmented litter and humified litter) and mineral soil horizons (Ah, E, Bhs and C) were studied. A total of 128 compounds were identified in the pyrograms, and composition differences were detected among the organic and mineral soil layers as well as between soils under beech and pine, for the main compound classes: nitrogen compounds, aromatics, lignin methoxyphenols, polycyclic aromatic hydrocarbons, lipids and polysaccharide-derived moieties. Such chemical differences were found to be derived from the biomass composition of the predominant vegetation type that was incorporated into the soil and from its progression into the soil profile. The analysis of the distribution of alkanes indicated higher SOM stabilization in the native beech forest soil. The signal of beech biomarkers (long chain n-alkanes C31-C33) found in the pine E horizon indicates the permanence of SOM derived from the natural forest ca. 100â¯years after the afforestation.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Suelo
/
Bosques
/
Fagus
/
Pinus sylvestris
Idioma:
En
Revista:
Sci Total Environ
Año:
2019
Tipo del documento:
Article