Your browser doesn't support javascript.
loading
A systematic evaluation of single cell RNA-seq analysis pipelines.
Vieth, Beate; Parekh, Swati; Ziegenhain, Christoph; Enard, Wolfgang; Hellmann, Ines.
Afiliación
  • Vieth B; Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University, Munich, Germany.
  • Parekh S; Max Planck Institute for Biology of Ageing, Cologne, Germany.
  • Ziegenhain C; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
  • Enard W; Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University, Munich, Germany.
  • Hellmann I; Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University, Munich, Germany. hellmann@bio.lmu.de.
Nat Commun ; 10(1): 4667, 2019 10 11.
Article en En | MEDLINE | ID: mdl-31604912
The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not yet been established. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ~3000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / RNA-Seq Tipo de estudio: Evaluation_studies / Guideline / Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Análisis de la Célula Individual / RNA-Seq Tipo de estudio: Evaluation_studies / Guideline / Prognostic_studies Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania