Your browser doesn't support javascript.
loading
Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
Sannomiya, Takumi; Konecná, Andrea; Matsukata, Taeko; Thollar, Zac; Okamoto, Takayuki; García de Abajo, F Javier; Yamamoto, Naoki.
Afiliación
  • Sannomiya T; Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
  • Konecná A; PRESTO , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
  • Matsukata T; ICFO-Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Barcelona , Spain.
  • Thollar Z; Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
  • Okamoto T; Department of Materials Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta , Midoriku, Yokohama 226-8503 , Japan.
  • García de Abajo FJ; Advanced Device Laboratory , RIKEN , Wako , Saitama 351-0198 , Japan.
  • Yamamoto N; ICFO-Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels , Barcelona , Spain.
Nano Lett ; 20(1): 592-598, 2020 Jan 08.
Article en En | MEDLINE | ID: mdl-31855432
ABSTRACT
Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2020 Tipo del documento: Article País de afiliación: Japón