Subfemtosecond Tracing of Molecular Dynamics during Strong-Field Interaction.
Phys Rev Lett
; 123(26): 263201, 2019 Dec 31.
Article
en En
| MEDLINE
| ID: mdl-31951453
We introduce and experimentally demonstrate a method where the two intrinsic timescales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photoelectron photoion coincidence experiment. In our experiment, elliptically polarized, 750 nm, 4.5 fs laser pulses were focused to an intensity of 9×10^{14} W/cm^{2} onto H_{2}. Using coincidence imaging, we directly observe the nuclear wave packet evolving on the 1sσ_{g} state of H_{2}^{+} during its first round-trip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.
Texto completo:
1
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2019
Tipo del documento:
Article