Your browser doesn't support javascript.
loading
CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging.
Zhang, Yucheng; Lobo-Mueller, Edrise M; Karanicolas, Paul; Gallinger, Steven; Haider, Masoom A; Khalvati, Farzad.
Afiliación
  • Zhang Y; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
  • Lobo-Mueller EM; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
  • Karanicolas P; Department of Radiology, McMaster University and Hamilton Health Sciences, Juravinski Hospital and Cancer Centre, Hamilton, Ontario, Canada.
  • Gallinger S; Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
  • Haider MA; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
  • Khalvati F; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
BMC Med Imaging ; 20(1): 11, 2020 02 03.
Article en En | MEDLINE | ID: mdl-32013871
BACKGROUND: Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assumption of CPH model limits the prognostic performance. In this work, using transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients. RESULTS: The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in terms of concordance index and index of prediction accuracy, providing a better fit for patients' survival patterns. CONCLUSIONS: The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations of conventional survival models.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Med Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias Pancreáticas / Carcinoma Ductal Pancreático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: BMC Med Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Canadá