A time-resolved multi-omic atlas of the developing mouse liver.
Genome Res
; 30(2): 263-275, 2020 02.
Article
en En
| MEDLINE
| ID: mdl-32051188
Liver organogenesis and development are composed of a series of complex, well-orchestrated events. Identifying key factors and pathways governing liver development will help elucidate the physiological and pathological processes including those of cancer. We conducted multidimensional omics measurements including protein, mRNA, and transcription factor (TF) DNA-binding activity for mouse liver tissues collected from embryonic day 12.5 (E12.5) to postnatal week 8 (W8), encompassing major developmental stages. These data sets reveal dynamic changes of core liver functions and canonical signaling pathways governing development at both mRNA and protein levels. The TF DNA-binding activity data set highlights the importance of TF activity in early embryonic development. A comparison between mouse liver development and human hepatocellular carcinoma (HCC) proteomic profiles reveal that more aggressive tumors are characterized with the activation of early embryonic development pathways, whereas less aggressive ones maintain liver function-related pathways that are elevated in the mature liver. This work offers a panoramic view of mouse liver development and provides a rich resource to explore in-depth functional characterization.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Proteoma
/
Desarrollo Embrionario
/
Transcriptoma
/
Hígado
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Genome Res
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China