Your browser doesn't support javascript.
loading
An In Vivo Assessment of Regional Brain Temperature during Whole-Body Cooling for Neonatal Encephalopathy.
Wu, Tai-Wei; L Wisnowski, Jessica; Geisler, Robert F; Reitman, Aaron; Ho, Eugenia; Tamrazi, Benita; Chapman, Rachel; Blüml, Stefan.
Afiliación
  • Wu TW; Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA. Electronic address: twu@chla.usc.edu.
  • L Wisnowski J; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA; Rudi Schulte Research Institute, Santa Barbara, CA.
  • Geisler RF; Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA.
  • Reitman A; Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA.
  • Ho E; Division of Neurology, Children's Hospital Los Angeles, Los Angeles, CA.
  • Tamrazi B; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA.
  • Chapman R; Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA.
  • Blüml S; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA; Rudi Schulte Research Institute, Santa Barbara, CA.
J Pediatr ; 220: 73-79.e3, 2020 05.
Article en En | MEDLINE | ID: mdl-32089332
OBJECTIVE: To assess differences in regional brain temperatures during whole-body hypothermia and test the hypothesis that brain temperature profile is nonhomogenous in infants with hypoxic-ischemic encephalopathy. STUDY DESIGN: Infants with hypoxic-ischemic encephalopathy were enrolled prospectively in this observational study. Magnetic resonance (MR) spectra of basal ganglia, thalamus, cortical gray matter, and white matter (WM) were acquired during therapeutic hypothermia. Regional brain tissue temperatures were calculated from the chemical shift difference between water signal and metabolites in the MR spectra after performing calibration measurements. Overall difference in regional temperature was analyzed by mixed-effects model; temperature among different patterns and severity of injury on MR imaging also was analyzed. Correlation between temperature and depth of brain structure was analyzed using repeated-measures correlation. RESULTS: In total, 53 infants were enrolled (31 girls, mean gestational age: 38.6 ± 2 weeks; mean birth weight: 3243 ± 613 g). MR spectroscopy was acquired at mean age of 2.2 ± 0.6 days. A total of 201 MR spectra were included in the analysis. The thalamus, the deepest structure (36.4 ± 2.3 mm from skull surface), was lowest in temperature (33.2 ± 0.8°C, compared with basal ganglia: 33.5 ± 0.9°C; gray matter: 33.6 ± 0.7°C; WM: 33.8 ± 0.9°C, all P < .001). Temperatures in more superficial gray matter and WM regions (depth: 21.9 ± 2.4 and 21.5 ± 2.2 mm) were greater than the rectal temperatures (33.4 ± 0.4°C, P < .03). There was a negative correlation between temperature and depth of brain structure (rrm = -0.36, P < .001). CONCLUSIONS: Whole-body hypothermia was effective in cooling deep brain structures, whereas superficial structures were warmer, with temperatures significantly greater than rectal temperatures.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Temperatura Corporal / Encéfalo / Imagen por Resonancia Magnética / Espectroscopía de Resonancia Magnética / Hipoxia-Isquemia Encefálica / Hipotermia Inducida Tipo de estudio: Observational_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: J Pediatr Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Temperatura Corporal / Encéfalo / Imagen por Resonancia Magnética / Espectroscopía de Resonancia Magnética / Hipoxia-Isquemia Encefálica / Hipotermia Inducida Tipo de estudio: Observational_studies Límite: Female / Humans / Infant / Male / Newborn Idioma: En Revista: J Pediatr Año: 2020 Tipo del documento: Article