Your browser doesn't support javascript.
loading
UT-A1/A3 knockout mice show reduced fibrosis following unilateral ureteral obstruction.
Rianto, Fitra; Kuma, Akihiro; Ellis, Carla L; Hassounah, Faten; Rodriguez, Eva L; Wang, Xiaonan H; Sands, Jeff M; Klein, Janet D.
Afiliación
  • Rianto F; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
  • Kuma A; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
  • Ellis CL; Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
  • Hassounah F; Department of Pathology, Emory University School of Medicine, Atlanta, Georgia.
  • Rodriguez EL; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
  • Wang XH; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
  • Sands JM; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
  • Klein JD; Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
Am J Physiol Renal Physiol ; 318(5): F1160-F1166, 2020 05 01.
Article en En | MEDLINE | ID: mdl-32174141
Renal fibrosis is a major contributor to the development and progression of chronic kidney disease. A low-protein diet can reduce the progression of chronic kidney disease and reduce the development of renal fibrosis, although the mechanism is not well understood. Urea reabsorption into the inner medulla is regulated by inner medullary urea transporter (UT)-A1 and UT-A3. Inhibition or knockout of UT-A1/A3 will reduce interstitial urea accumulation, which may be beneficial in reducing renal fibrosis. To test this hypothesis, the effect of unilateral ureteral obstruction (UUO) was compared in wild-type (WT) and UT-A1/A3 knockout mice. UUO causes increased extracellular matrix associated with increases in transforming growth factor-ß, vimentin, and α-smooth muscle actin (α-SMA). In WT mice, UUO increased the abundance of three markers of fibrosis: transforming growth factor-ß, vimentin, and α-SMA. In contrast, in UT-A1/A3 knockout mice, the increase following UUO was significantly reduced. Consistent with the Western blot results, immunohistochemical staining showed that the levels of vimentin and α-SMA were increased in WT mice with UUO and that the increase was reduced in UT-A1/A3 knockout mice with UUO. Masson's trichrome staining showed increased collagen in WT mice with UUO, which was reduced in UT-A1/A3 knockout mice with UUO. We conclude that reduced UT activity reduces the severity of renal fibrosis following UUO.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas de Transporte de Membrana / Obstrucción Ureteral / Riñón / Enfermedades Renales Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Asunto de la revista: FISIOLOGIA / NEFROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Georgia

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas de Transporte de Membrana / Obstrucción Ureteral / Riñón / Enfermedades Renales Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Renal Physiol Asunto de la revista: FISIOLOGIA / NEFROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Georgia