Your browser doesn't support javascript.
loading
EXO1 resection at G-quadruplex structures facilitates resolution and replication.
Stroik, Susanna; Kurtz, Kevin; Lin, Kevin; Karachenets, Sergey; Myers, Chad L; Bielinsky, Anja-Katrin; Hendrickson, Eric A.
Afiliación
  • Stroik S; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
  • Kurtz K; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel, Hill, NC 27514, USA.
  • Lin K; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
  • Karachenets S; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
  • Myers CL; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
  • Bielinsky AK; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
  • Hendrickson EA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Nucleic Acids Res ; 48(9): 4960-4975, 2020 05 21.
Article en En | MEDLINE | ID: mdl-32232411
ABSTRACT
G-quadruplexes represent unique roadblocks to DNA replication, which tends to stall at these secondary structures. Although G-quadruplexes can be found throughout the genome, telomeres, due to their G-richness, are particularly predisposed to forming these structures and thus represent difficult-to-replicate regions. Here, we demonstrate that exonuclease 1 (EXO1) plays a key role in the resolution of, and replication through, telomeric G-quadruplexes. When replication forks encounter G-quadruplexes, EXO1 resects the nascent DNA proximal to these structures to facilitate fork progression and faithful replication. In the absence of EXO1, forks accumulate at stabilized G-quadruplexes and ultimately collapse. These collapsed forks are preferentially repaired via error-prone end joining as depletion of EXO1 diverts repair away from error-free homology-dependent repair. Such aberrant repair leads to increased genomic instability, which is exacerbated at chromosome termini in the form of dysfunction and telomere loss.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Telómero / Enzimas Reparadoras del ADN / Replicación del ADN / Exodesoxirribonucleasas / G-Cuádruplex Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Telómero / Enzimas Reparadoras del ADN / Replicación del ADN / Exodesoxirribonucleasas / G-Cuádruplex Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos