Your browser doesn't support javascript.
loading
Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion.
Zhang, Qizhan; Zhou, Minghua; Ren, Gengbo; Li, Yawei; Li, Yanchun; Du, Xuedong.
Afiliación
  • Zhang Q; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China.
  • Zhou M; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, 300350, Tianjin, China.
  • Ren G; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China.
  • Li Y; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China.
  • Li Y; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China. zhoumh@nankai.edu.cn.
  • Du X; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, 300350, Tianjin, China. zhoumh@nankai.edu.cn.
Nat Commun ; 11(1): 1731, 2020 04 07.
Article en En | MEDLINE | ID: mdl-32265452
ABSTRACT
Hydrogen peroxide (H2O2) synthesis by electrochemical oxygen reduction reaction has attracted great attention as a green substitute for anthraquinone process. However, low oxygen utilization efficiency (<1%) and high energy consumption remain obstacles. Herein we propose a superhydrophobic natural air diffusion electrode (NADE) to greatly improve the oxygen diffusion coefficient at the cathode about 5.7 times as compared to the normal gas diffusion electrode (GDE) system. NADE allows the oxygen to be naturally diffused to the reaction interface, eliminating the need to pump oxygen/air to overcome the resistance of the gas diffusion layer, resulting in fast H2O2 production (101.67 mg h-1 cm-2) with a high oxygen utilization efficiency (44.5%-64.9%). Long-term operation stability of NADE and its high current efficiency under high current density indicate great potential to replace normal GDE for H2O2 electrosynthesis and environmental remediation on an industrial scale.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: China