Your browser doesn't support javascript.
loading
Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches.
Sannigrahi, Srikanta; Pilla, Francesco; Basu, Bidroha; Basu, Arunima Sarkar; Sarkar, Konika; Chakraborti, Suman; Joshi, Pawan Kumar; Zhang, Qi; Wang, Ying; Bhatt, Sandeep; Bhatt, Anand; Jha, Shouvik; Keesstra, Saskia; Roy, P S.
Afiliación
  • Sannigrahi S; School of Architecture, Planning and Environmental Policy, University College Dublin, Richview, Clonskeagh, Dublin, D14 E099, Ireland. Electronic address: srikanta.sannigrahi@ucd.ie.
  • Pilla F; School of Architecture, Planning and Environmental Policy, University College Dublin, Richview, Clonskeagh, Dublin, D14 E099, Ireland.
  • Basu B; School of Architecture, Planning and Environmental Policy, University College Dublin, Richview, Clonskeagh, Dublin, D14 E099, Ireland.
  • Basu AS; School of Architecture, Planning and Environmental Policy, University College Dublin, Richview, Clonskeagh, Dublin, D14 E099, Ireland.
  • Sarkar K; Rabindra Bharati University, Kolkata, West Bengal 700007, India.
  • Chakraborti S; Center for the Study of Regional Development (CSRD), Jawaharlal Nehru University, New Delhi 110067, India.
  • Joshi PK; School of Environmental Sciences (SES), Jawaharlal Nehru University, New Delhi 110067, India.
  • Zhang Q; The Frederick S. Pardee Center for the Study of the Longer-Range Future, Frederick S. Pardee School of Global Studies, Boston University, Boston, MA 02215, USA.
  • Wang Y; School of Public Administration, China University of Geosciences, Wuhan 430074, China.
  • Bhatt S; Department of Geology & Geophysics, Indian Institute of Technology Kharagpur, 721302, India.
  • Bhatt A; H.N.B.Garhwal University, Srinagar - 246174, Dist. Garhwal, Uttarakhand 246174, India.
  • Jha S; Indian Centre for Climate and Societal Impacts Research (ICCSIR), Kachchh, Gujarat 370465, India.
  • Keesstra S; Soil, Water and Land-use Team, Wageningen University and Research, Droevendaalsesteeg3, 6708PB Wageningen, Netherlands; Civil, Surveying and Environmental Engineering, The University of Newcastle, Callaghan 2308, Australia.
  • Roy PS; Innovation Systems for the Drylands (ISD), ICRISAT, Pathancheru, Hyderabad 502 324, India.
Sci Total Environ ; 725: 138331, 2020 Jul 10.
Article en En | MEDLINE | ID: mdl-32302833
Remote sensing techniques are effectively used for measuring the overall loss of terrestrial ecosystem productivity and biodiversity due to forest fires. The current research focuses on assessing the impacts of forest fires on terrestrial ecosystem productivity in India during 2003-2017. Spatiotemporal changes of satellite remote sensing derived burn indices were estimated for both fire and normal years to analyze the association between forest fires and ecosystem productivity. Two Light Use Efficiency (LUE) models were used to quantify the terrestrial Net Primary Productivity (NPP) of the forest ecosystem using the open-source and freely available remotely sensed data. A novel approach (delta NPP/delta burn indices) is developed to quantify the effects of forest fires on terrestrial carbon emission and ecosystem production. During 2003-2017, the forest fire intensity was found to be very high (>2000) across the eastern Himalayan hilly region, which is mostly covered by dense forest and thereby highly susceptible to wildfires. Scattered patches of intense forest fires were also detected in the lower Himalayan and central Indian states. The spatial correlation between the burn indices and NPP were mainly negative (-0.01 to -0.89) for the fire-prone states as compared to the other neighbouring regions. Additionally, the linear approximation between the burn indices and NPP showed a positive relation (0.01 to 0.63), suggesting a moderate to high impact of the forest fires on the ecosystem production and terrestrial carbon emission. The present approach has the potential to quantify the loss of ecosystem productivity due to forest fires.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2020 Tipo del documento: Article