Your browser doesn't support javascript.
loading
Measurement of Kinetic-Scale Current Filamentation Dynamics and Associated Magnetic Fields in Interpenetrating Plasmas.
Swadling, G F; Bruulsema, C; Fiuza, F; Higginson, D P; Huntington, C M; Park, H-S; Pollock, B B; Rozmus, W; Rinderknecht, H G; Katz, J; Birkel, A; Ross, J S.
Afiliación
  • Swadling GF; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Bruulsema C; Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
  • Fiuza F; SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Higginson DP; SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Huntington CM; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Park HS; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Pollock BB; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Rozmus W; Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
  • Rinderknecht HG; Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
  • Katz J; SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Birkel A; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Ross JS; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
Phys Rev Lett ; 124(21): 215001, 2020 May 29.
Article en En | MEDLINE | ID: mdl-32530650
We present the first local, quantitative measurements of ion current filamentation and magnetic field amplification in interpenetrating plasmas, characterizing the dynamics of the ion Weibel instability. The interaction of a pair of laser-generated, counterpropagating, collisionless, supersonic plasma flows is probed using optical Thomson scattering (TS). Analysis of the TS ion-feature revealed anticorrelated modulations in the density of the two ion streams at the spatial scale of the ion skin depth c/ω_{pi}=120 µm, and a correlated modulation in the plasma current. The inferred current profile implies a magnetic field amplitude ∼30±6 T, corresponding to ∼1% of the flow kinetic energy, indicating that magnetic trapping is the dominant saturation mechanism.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos