Your browser doesn't support javascript.
loading
Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling.
Eslami, Parastou; Thondapu, Vikas; Karady, Julia; Hartman, Eline M J; Jin, Zexi; Albaghdadi, Mazen; Lu, Michael; Wentzel, Jolanda J; Hoffmann, Udo.
Afiliación
  • Eslami P; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. peslami1@mgh.harvard.edu.
  • Thondapu V; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Karady J; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Hartman EMJ; Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
  • Jin Z; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Albaghdadi M; Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Lu M; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
  • Wentzel JJ; Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
  • Hoffmann U; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Int J Cardiovasc Imaging ; 36(12): 2319-2333, 2020 Dec.
Article en En | MEDLINE | ID: mdl-32779078
Improvements in spatial and temporal resolution now permit robust high quality characterization of presence, morphology and composition of coronary atherosclerosis in computed tomography (CT). These characteristics include high risk features such as large plaque volume, low CT attenuation, napkin-ring sign, spotty calcification and positive remodeling. Because of the high image quality, principles of patient-specific computational fluid dynamics modeling of blood flow through the coronary arteries can now be applied to CT and allow the calculation of local lesion-specific hemodynamics such as endothelial shear stress, fractional flow reserve and axial plaque stress. This review examines recent advances in coronary CT image-based computational modeling and discusses the opportunity to identify lesions at risk for rupture much earlier than today through the combination of anatomic and hemodynamic information.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Angiografía Coronaria / Vasos Coronarios / Modelación Específica para el Paciente / Angiografía por Tomografía Computarizada / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Cardiovasc Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Enfermedad de la Arteria Coronaria / Angiografía Coronaria / Vasos Coronarios / Modelación Específica para el Paciente / Angiografía por Tomografía Computarizada / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Cardiovasc Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos