Your browser doesn't support javascript.
loading
Predicting antigen specificity of single T cells based on TCR CDR3 regions.
Fischer, David S; Wu, Yihan; Schubert, Benjamin; Theis, Fabian J.
Afiliación
  • Fischer DS; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
  • Wu Y; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
  • Schubert B; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
  • Theis FJ; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
Mol Syst Biol ; 16(8): e9416, 2020 08.
Article en En | MEDLINE | ID: mdl-32779888
It has recently become possible to simultaneously assay T-cell specificity with respect to large sets of antigens and the T-cell receptor sequence in high-throughput single-cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T-cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single-cell immune repertoire screens can be mitigated by modeling cell-specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell-to-dextramer binding strength and receptor-to-pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single-cell RNA-seq studies on T cells without the need for MHC staining.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Linfocitos T / Complejo Receptor-CD3 del Antígeno de Linfocito T / Biología Computacional / Análisis de la Célula Individual / Antígenos de Histocompatibilidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Linfocitos T / Complejo Receptor-CD3 del Antígeno de Linfocito T / Biología Computacional / Análisis de la Célula Individual / Antígenos de Histocompatibilidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Alemania