Your browser doesn't support javascript.
loading
The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability.
Guo, Wenting; Sun, Bo; Estillore, John Paul; Wang, Ruiwu; Chen, S R Wayne.
Afiliación
  • Guo W; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
  • Sun B; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Medical School, Kunming University of Science
  • Estillore JP; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
  • Wang R; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
  • Chen SRW; Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada. Electronic address: swchen@ucalgary.ca.
J Biol Chem ; 295(46): 15622-15635, 2020 11 13.
Article en En | MEDLINE | ID: mdl-32878990
ABSTRACT
Structural analyses identified the central domain of ryanodine receptor (RyR) as a transducer converting conformational changes in the cytoplasmic platform to the RyR gate. The central domain is also a regulatory hub encompassing the Ca2+-, ATP-, and caffeine-binding sites. However, the role of the central domain in RyR activation and regulation has yet to be defined. Here, we mutated five residues that form the Ca2+ activation site and 10 residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site. We also generated eight disease-associated mutations within the central domain of RyR2. We determined the effect of these mutations on Ca2+, ATP, and caffeine activation and Mg2+ inhibition of RyR2. Mutating the Ca2+ activation site markedly reduced the sensitivity of RyR2 to Ca2+ and caffeine activation. Unexpectedly, Ca2+ activation site mutation E3848A substantially enhanced the Ca2+-independent basal activity of RyR2, suggesting that E3848A may also affect the stability of the closed state of RyR2. Mutations in the Ca2+ activation site also abolished the effect of ATP/caffeine on the Ca2+-independent basal activity, suggesting that the Ca2+ activation site is also a critical determinant of ATP/caffeine action. Mutating residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site significantly altered Ca2+ and caffeine activation and reduced Mg2+ inhibition. Furthermore, disease-associated RyR2 mutations within the central domain significantly enhanced Ca2+ and caffeine activation and reduced Mg2+ inhibition. Our data demonstrate that the central domain plays an important role in channel activation, channel regulation, and closed state stability.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Canal Liberador de Calcio Receptor de Rianodina / Miocardio Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Canal Liberador de Calcio Receptor de Rianodina / Miocardio Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Biol Chem Año: 2020 Tipo del documento: Article País de afiliación: Canadá